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ABSTRACT

After a brief review of the inviscid nonequilibrium flow equations in

general and of the derivation of the linear nonequilibrlum flow equations,

the supersonic small-perturbation flow field past an arbitrary boundary is

found, by the Laplace transformation, at the vicinity of the initial out-

going frozen Mach line, the vicinity of the boundary, and far downstream
of the initial outgoing frozen Mach line. Closed-form solutions are

obtained and the general results are applied to compute the geometry of

a boundary having constant pressure and the flow at the surface of a

biconvex airfoil. A method of extending the results to the entire flow
field is indicated.
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LINEARIZED SUPERSONIC NONEQUILIBRIUM FLOW PAST AN

ARBITRARY BOUNDARY*

By James J. Der

SUMMARY

After a brief review of the inviscid nonequilibrium flow equations

in general and of the derivation of the linear nonequilibrium flow

equations_ the supersonic small perturbation flow field past an arbitrary

boundary is found_ by the Laplace transform method_ at the vicinity of

the initial outgoing frozen Mach line_ the vicinity of the boundaryj and

far downstream of the initial frozen Mach line.

It is found that all flow quantities at the initial outgoing frozen

Mach line decay exponentially with distance above the boundary and that

their streamwise derivatives decay more slowly. The flow field far down-

stream of the initial frozen M_ch line is found to be essentially that at

equilibrium.

Analytical solutions are obtained for the flow quantities in the

vicinity of the boundary for two types of boundary conditions: (a) pre-

scribed boundary geometry and (b) prescribed pressure distribution on the

boundary. These general closed form relations are applied to obtain:

(a) the geometry of the boundary when the pressure thereon is constant

and (b) the flow conditions at the surface of a biconvex airfoil. A

method of extending the results to the entire flow field is indicated.

INTRODUCTION

In the classical treatment of gasdynsmlic problems_ it is usually

assumed that the flow medium is in thermodynamic and chemical equilibrium.

This is a valid assumption only if the relaxation lengths are small.

Various authors (refs. i through 5) have recently investigated the flow of

gases when the flow field is out of equilibrium. The aim of the present

*This work arose out of the author's participation in a graduate

research seminar in the Department of Aeronautical Engineering_ Stanford

University. The seminar is being conducted as part of a research program

supported by a grant to Stanford University from the National Science

Foundation.
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work is to study the effects of nonequilibrium on somesimple flow
fields_ namely, those where the governin_ equations can be l_nearized.

The linearized nonequilibriumflow equation has been derived by_
amongothers, Vincenti (ref. !), Clarke (ref. 2), and Moore and Gibson
(ref. 3). Vincenti solved for the entire flow field over a wavy wall
for the complete speed range from subsonic through supersonic. Clarke
studied the supersonic flow past a corner; by meansof the Laplace trans-
formation, Clarke determined the flow on the wall and in the vicinity of
the initial outgoing equilibrium Mach line.

In the present work a somewhatmore general type of linearized non-
equilibrium flow field is studied. The boundary condition is generalized
as comparedwith that of Clarke by allowing the boundary to be arbitrary
to a certain extent. Both the direct problem (boundary geometry prescribed)
and the inverse problem (flow conditions on the boundary prescribed) are
treated. The flow quantities and their derivatives in various regions
are obtained; the flow conditions in the vicinity of the initial outgoing
frozen Machline, in the vicinity of the wall 3 and at large distance
downstreamof the initial outgoing frozen Machline are thus determined.

The author is indebted to Dr. Max. A. Heaslet of the Am_sResearch
Center and Professor Walter G. Vincenti of Stanford University for their
valuable advice, criticism, and encouragementduring the course of the
re search•
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PRINCIPAL SYMBOLS

Me2-1

free-stream sonic speed in the equilibrium condition

free-stream sonic speed in the frozen condition

constant of integration (with respect to _; eq. (19))

Clarke's function3 defined by equation (32)

(a - 1)(a+ 3)

8

(a - 1)(3a+ i)
8
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f any flow quantity



g

h

K

L

function defined by equation (35)

specific enthalpy

hp_ + hq Ct_p_

characteristic geometrical length

M

P

q

qi

S

S

t

LI_V

x,y

x+ ,y+

C6

e

p

L

free-streamMach number (frozen or equilibrium)

pressure

nonequilibriumparameter

nonequilibriumparameter associated with the ith mode

(molecular vibrational energies, degrees of dissociation,

and degrees of ionization)

Laplace transformation variable

specific entropy

timej also, dummy variable

velocities in the x,y directions

free-stream velocity

Cartesian coordinates; x parallel to the free stream

normalized Cartesian coordinates:

+ +
x - ay

semicharacteristic coordinates:

slope of the boundary

density of the fluid

x + _fY

x+--K ' Y = K

m x + y+ y+
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_ + S+ S

perturbation velocity potential

function defined by equation (33)

rates of change of q

CO

Subscripts

quantity at the origin] a!so_ characteristic constants

equilibrium quantity

frozen quantity

associated with the

cients of the ith

ith mo_e of nonequilibrium] also, coeffi-

term in the series of equation (29)

free-stream quantity

A

5
i
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Superscripts

+

perturbation quantity

normalized quantity in the x+_y + coordinates

normalized quantity in the _ coordinates

Laplace transform quantity

RESUM_ OF THE LINEARIZED EQUATIONS FOR NONEQUILIBRIUM FLOW

The equations for the nonequilibrium flow of gases, both in the

complete and in the linearized forms, have been introduced by various

authors (refs. ! through 5)- These governing equations and their linear-

izations will be reviewed briefly in this section.

Consider the flow of a medium with negligible transport properties

(nonviscous, nonconducting, nonradiating) and in the absence of field

(or body) forces (e.g., gravitational and electromagnetic). The

conservations of mass, mom_ntum_ and energy yield
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Mass Dp-- + O div V = 0 (la)
Dt

i
Momentum --DV+ - grad p = 0 (ib)

Dt O

Energy Dh i Dp _ 0 (ic)
Dt p Dt

where P, V, p, and h are the density, velocity, pressure, and enthalpy

of the fluid, and D/Dt denotes the Eulerian differential operator

[($/_t) + V • grad].

These equations are_ of course, the same in the equilibrium, frozen,

or the in-between nouequilibri_m flow since the conservation principles

are not directly dependent on the thermodynamic state of the flow media.

To relate h to p and p, which is necessary since we have so far

one dependent variable more than the n_mber of equations_ we introduce the

equation of state in the form

State h = h(p, p, ql, q2, " " "' qn) (id)

where ql, q2_ ' " ", qn are the molecular vibrational energies and
degrees of dissociations and ionizations of the constituents of the medium.

Sometimes the state equation is expressed by a set of two equations_

such as

h = h(p3 T_ ql_ q2_ "

T = T(p_ P, ql, q2'

The first one of the set is commonly called the caloric equation of state,

and the second one the thermal equation of state. This manner of express-

ing the thermodynamic state of the medium is a convenient one when certain

idealizations, such as the perfect gas and the Lighthill gas I assumptions,

are introduced which require the intermediate introduction of temperature.

The more compact form of equation (id) will be adopted here.

Now_ along with the introduction of one additional equation (id), n

dependent variables ql' qa' ", qn have been introduced. Obviously
more equations are required. These are provided by the rate equations

iLighthiil proposed to approximate the state equation for air by

d q)a (PdlP)exp(-Td/T), where q isau expression of the form q2/(l d Td are constants.the degree of dissociation, and p u
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Rate Dqi = _i(P, P, ql' q2' " " "' qn ) i = I, 2, ., n
Dt (le)

Equations (la) through (le), then, are the complete flow equations

which, together with the appropriate boundary and initial conditions_
determine the flow field.

Let us compare equations (i) with the limiting cases, equilibrium and

frozen. In the equilibri_ li_it we assu__ there exists an equilibrium

value qei for each qi for the local values of p and p_ then we have

qe i = qei(p,p) , and equation (!d) can be rewritten as

h = hEp, p, 0), %2(P, 0), • •., %n(P, P)]

: he(p,0)

whereas in the frozen limit (no reaction), Dqi/Dt = O, or qi = constant,

and equation (id) can be rewritten as

h = h(p, 0, qi : constant, q2 = constant,

= hf(p, 0)

"' qn = constant)

Thus in the limiting cases of frozen and equilibrium, the equation

of state introduces no new variable; consequently equations (la) through

(id) constitute a complete set of flow equations.

In the case of a perfect gas qi = qi(PJ O) = constant_ hence a flow

field of perfect gas is in both equilibrium and frozen states simultane-

ously and cannot be in a nonequilibrium state at any time.

Instead of studying equations (I) in their full forms, we study a

much simpler problem, one where the entire flow field perturbs only

slightly from a reference, undisturbed, uniform flow. For such a case

the flow equations can be linearized. The problems studied will be

limited to those of steady (_/$t = 0), two-dimensional planar, supersonic

(Mf > I) flow. Also, it will be assumed that only one nonequilibrium

effect can be of importance at the same time_ that is, n = ij or

h = h(p, p, q).

Let u and v denote the velocities in the Cartesian coordinates x

and y, respectively. The undisturbed velocity U_ can be chosen to be
in the x direction. The linearization of equations (!) can be done by_

first, expanding the flow quantities (dependent variables) in an asymptotic

series, that is, taking the first two terms,

f _ f_ + f', f' << f_ (2)

A

5
l



and, second, substituting equations (2) into equations (i) and solving
for the first order perturbation quantities. Here f is any flow
quantity, the subscript _ denotes undisturbed stream value, and the
prime indicates the first-order perturbation value. In the form of
equations (2), the dependent variables are

The operator D/Dt can be immediately simplified as

= (v_,o) + (u',_,)

p=p_+p'

p=p +p'

h = boo + h'

q = Clco+ q'

(3)

D

We now substitute equations (3) into equations (i), considering the

simple ones first. Integrating equation (ic) and noting h' and p' are

zero initially gives

p_h' = p'

Equation (ib) in expanded form is

bp' _
pooU_o bu' + 0

a-7 _x

_v' bp'
p_-- + - o

ax by

(_)

(5a)

(_b)

Integrating equation (5a) gives, noting u' is also zero initially,

p, = pooUcou' (6a)

while equations (5b) and (6a) give

_V T bU r

bx by
-0 (6b)

Hence, from equations (ib) and (ic) it can be concluded that
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(a) The perturbation pressure, enthalpy, and x velocity are

proportional to each other.

(b) The flow field is irrotational.

These conclusions are the same regardless of whether the flow is in the

frozen, equilibrium, or nonequilibrium state, as long as the disturbances

are small.

The remaining equations (mass, state, rate) can be made to yield a

relation describing the flow field in terms of the velocities. Since

this has already been done in reference i, the derivation of this relation

will not be repeated here. Essentially, equations (la); (ic)_ and (id)

are combined, eliminating all variables except the perturbation velocities,

which can be put in terms of a perturbation velocity potential (since the

flow is irrotational). The resulting equation is

K(_f2_xx " <PYY)x + _e2q°xx " 9YY = 0 (7)

where K = hp T_U_/(hDo ° + hq_qDm), a parameter proportional to the

relaxation length (T_U_) in the undisturbed stream, Too, usually called

the relaxation time_ is defined by equation (8) later] x and y are the

streamwise and normal coordinates; 9 is the perturbation velocity

potential, defined by the relations 9x = u' and 9y = v'; _f and Re are
defined by the expressions _f2 = Mf2 _ i and Pe a = Me m - l; and Mf and

Me are the undisturbed stream Mach nttmbers based on the frozen and

equilibrium sonic speeds (Mf = U_/af, M e = Uoo/ae) , respectively. The

sonic speeds are defined as

Frozen af2 - _D/S,q

Equilibrium aem_ 81_)S]q= qe

J

1

S being the entropy of the fluid.

The term TooU_ comes from the linearization of the rate equation

(ref. i, p. 486) which is, to the first order

U_ 8q' qe' " q'- (8)
_X Too

Note that qe' is the fictitious value of q' if q' is in equilibrium

with the local p' and p'.
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From equation (8) it is apparent that when T_U_ is infinite the

rate of change of q is zero and q' takes a constant value; this is

the frozen case. If T_U_ is zero, q' must equal qe' in order for

the rate of change of q to be finite, as it is known to be from

classical gasdynamics - that is_ q' must take the equilibrium value;

this is the equilibrium case.

That the relaxation length plays an important role in determining

the nonequilibrium effects is obvious and can be verified in observing

the term containing K in equation (7). If K = O, equation (7) reduces

to the well-known Prandtl-Glauert linear equation, with the Mach number

parameter _ = _e' On the other hand, if K _ _ the first term dominates,

or

- =0(_fa_xx _YY)x

Integrating this equation once gives

But A(y) must be zero since it must satisfy all values of x includinz
where the uniform stream is not disturbed. Hence, here equation (7)

reduces to the classical Prandtl-Glauert equation again_ this time with

the Mach n_mber parameter _ = _f.

We complete this section of linearized equations by considering the

relations of P' and q'. The value of p' can be related to the velocity

by the mass equation (la), which is, in the expanded form

or

+ + ST,;Y--° (9)

p'_ u' i FDv'
p_ U_ _j-_ dx (9a)

The value of q' can be obtained from

q'= ' + \¥4o + '

where p' ' and h'p _ are in turn related to the velocities by equations

(4), (6a), and (9a).
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TEE TRANSFORMED EQUATIONAND ITS SOLUTIONS

Equation (7) can be solved as follows:

(a) Normalize the equation (eq. (7)).

(b) Transform the equation from (a) by coordinate transformation.

(c) Transform the equation from (b) by the Laplace transformation.

(d) Solve the equation from (c) and invert.

It should be noted that steps (a) and (b) are purely for derivational

simplicities, and the use of the Laplace transformation is, of course, only

one of the various methods one can use to solve a linear hyperbolic partial

differential equation.

The problem to be studied can be stated in mathematical terms as
follows:

Let the uniform flow region (fig. i) be on the left of the origin

(x < 0). Let 8(x) denote the slope of the boundary, which is to be at

y = 0. 2 The tangency condition, which gives e = v'U_ requires e to

be zero for x < O. For x > 0, e is arbitrary but is assumed to be

continuous. The corner (x =--0, y = 0) can be either sharp (8(0) _ O) or

smooth (e(O) = 0). In supersonic flow it would be sufficient to study

only the upper plane, or y _ 0. Finally, the boundary condition on

the plane y = 0 can be one of the following quantities

(a) O(x) , or v'(x, O)

(b) u'(x, O) , p'(x, O) , or O)

(c) Uy'(X, o)

(d) vy'(x,O)

etc.

When a boundary condition of the type (a) is prescribed, it is

usually called the direct problem, whereas when one of the other types is

prescribed; it is usually called the inverse problem. In the present work,

both the direct problem (type (a) boundary conlition prescribed) and an

inverse problem (type (b) boundary condition prescribed) are treated.

A

5
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2Within the accuracy of the linearized theory, the boundary condition

can be specified on y = 0 rather than on the actual boundary itself.
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The boundary conditions can be summarizedas

_={0 x<O
finite x _ _ , y _

A

5
1

5

V !

--= e(x) --o
Uoo

+
With the introduction of the new variables q0+, x , y+, and a,

defined by the relations

qo = U_qo + , x = Kx + y+ _ea/_f m, y = (K/_f) , a =

equation (7) becomes

+ a_++x + + = 0- -  y+y+ (ii)

Thus the flow equation can be normalized into an equation containing a

single parameter a, although in general the boundary conditions may

introduce more parameters, such as a characteristic geometrical length

(e.g., the chord length of an airfoil). Note that, since af is always

greater than ae (ref. 4, p. 15), a is always greater than unity.

The dimensionless coordinates x + and y+ are now in terms of numbers

of relaxation lengths instead of physical lengths. If the characteristic

geometrical length is large compared with the relaxation length_ the fluid

particles at any point (x +, y+) in the flow field, except in the neighbor-

hood of the origin, have traveled a distance of a large number of relaxa-

tion lengths and hence have essentially arrived at the equilibrium

condition] this is formally equivalent to the case where the relaxation

length (and hence K) is s_ll. On the other hand, if the characteristic

geometrical length is small compared with the relaxation length, the fluid

particles in the vicinity 3 of the boundary have traveled a distance small

compared with the relaxation length; thus the flow field in this vicinity

is essentially at the frozen condition. This is formally equivalent to

the case where the relaxation length is large. Thus in the cases where

there exists a geometrical characteristic length_ the flow field in the

region of interest is in the equilibrium, nonequilibrium, or frozen

condition depending on whether I (_ L/K, denoting L the geometrical

characteristic length) is _, finite, or 0, respectively. On the other

hand_ in the cases where there is no characteristic geometrical length,

all three conditions (equilibrit_m, nonequilibrium, and frozen) exist;

SEven when the characteristic geometrical length is small, the flow

field at large y behaves like that at equilibrium, and in some cases

(e.g., an airfoil where e = constant for x greater than the chord

length) the flow field behaves like that at equilibrium at large x.
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the frozen condition exists near the corner (x + = 0, y+ = 0), the non-
equilibrium condition exists at finite positive x+ and y+_ and the
equilibrium condition occurs at x+ _ _ and y+ _ _.

Nowtransform equation (ii) by the change of independent variables
= x+ - y÷, q = y+. This is not an absolutely necessary step, but it

simplifies the analysis. It is easy to see that the disturbances (from
the wall) camuotaffect the flow field ahead of the frozen Machline
originating at the corner (x+ = 0_ y+ = 0)] that is, the disturbances
(_+, u+_ v+_ and their derivatives) are zero in front of the first frozen
Mach line (x + - y+ = 0). It is convenient, therefore, to refer to a
location in the flow field by its distance (x + - y+) downstreamfrom the
initial frozen Mach line, and its distance (y+) above the wall. Other
coordinate systems with a different choice for the second coordinate,
such as _+ - y+ and x+ + y+, can be also used] but for the types of
problems we are considering, single wall with outgoing wave (of disturb-
ances), this choice of _ = x+ - y+ and q = y+ is simpler.

A_plying the foregoing coordinate transfor_&tion_ noting _/_x+ = _/_
and _/_y+ = _/_ - _/_, and denoting _(_,_) = f+(x +, y+) converts
equation (ii) to

2_q_ - _qq_ + (a - i) _

_e bouudary conditions are now

(12)

0 < 0 (13a)
L

finite q _ _= (13b)

and

Equation (i4) is the flow tamgency condition at the wall. Again,

remember that it need not be always that the boundary slope, 8, is

prescribed. In the inverse problem, some other flow quantity (u_ g_;
etc.) on the boundary can be prescribed and th9 rest of the flow quantities

(including 8) are to be determined. Nevertheless_ the tangency condition

(eq. (14)) still holds regardless of whether e is a known or an unknown

function in a problem. For later interpretation of the results, it is

necessary to know the normalized quantities, {(_)_ in terms of the

physical quantities, f(x_y); they are related as follows:

A

5
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= m/U_K

= (u - u.)/u_

= v/Uoo

- p./p=u= _ = (p - p=)/_=u=_

# -- q'lq= = (q - _o)I_

(l_)

We now solve equation (12) by means of the Laplace transformation

(with respect to _). This is the same general approach used by Clarke

in solving the flow past a straight corner. The present work considers

a somewhat more general type of boundary condition since the shape of the

wall can be arbitrary, so long as it is smooth. By means of the Laplace

transformation, the partial differential equation (12) is transformed into

an ordinary differential equation, the solution of which gives the results

in terms of the transformed variables. The inversion of these transformed

solutions gives the desired results in physical terms. As will be seen

later, the last step is the most difficult.

The Laplace transform of a function _(_N) with respect to _ is
defined as

L[f(_,n)] m f(s,n) m exp(-s{){(_,n)d_

o

where L and the bar denote the Laplace transform.

Only a few identities and theorems of the Laplace transformation will

be used in this paper. For later reference they are listed in the follow-

ing:
n-I

] L _L _(_,_) = snT(s,_) - sn-_-J _j {(o,_) (16a)
j=o _J

L _(_,_l) - f(s,_)
6n

(16b)

f_L'_[sTx(s)Ta(s)] = fm(o)f2(_) + fl'(t)_2(_ - t)dt

0

(16c)
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f(O,q) = iimsf(s,q) (16d)
S ,-_ oo

lim_(_,D) = lims_(s,_)

_-_oo s-_O

(16e)

Applying the Laplace transformation to equation (12), using the

identities (!6a) and (16b) and part of the boundary condition equation

(13), we obtain

_q_ - 2s_n- _- 2 -_ + (a - z) $_(o,_)

_I_ _ + (a- l)s]_(O,N))- - 2(i . s) -_

Setting the right-hand side of equation (17) zero gives

(17)

g_

A

9
i
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_B_ - 2s_ - [(a - 1)/(l + s)]sa@ = 0 (18)

This last assumption is valid if it can be shown that equation (18)

yields a solution such that when it is substituted into the right-hand

side of equation (17) the latter expression vanishes. Later, we shall

see that solution of equation (18) gives (eqs. (24) and (25))

@(o,_) = o

_(0,I])= _(O,O)exp_ a -12 _)

Hence, the right-hand side of equation (i7) does inleed vanish.

The general solution of equation (18) is of the form (denoting

_ [(a+ s)l(l+ s)]_/_)

= A(s)expE-s_](_ - 1)] * B(s)exp[s_]((_ - i)] (19)

where A and B are functions of s to be determined from the remaining

boundary conditions.

Since a is always greater than unity, _ - i is always positive.

On the upper plane (h > 0), the second term grows unbound with D unless

B is zero. Since _ --(hence _) is finite at _ _ _, B(s) must be zero.

The wall tangency condition (eq. (14)), in transformed terms, is
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at

This wall tangency condition determines A(s) in terms of O(s), resulting

in an expression for _ in terms of _(s); we thus obtain finally

= - l)] (20)

This is the general solution, in terms of Laplace transforms, of the

problem stated at the beginning of this section. The inversion of this

expression yields the solution in the physical terms. Unfortunately, the

inversion of equation (20) is rather difficult in general.

For s _ O, s _ % or N _ 0, the right-hand side of equation (20)

can be simplified considerably, resulting in expressions that can be

inverted either directly, with the aid of equations (16c), (16d), and

(16e), or with the aid of inversion tables (ref. 6). In the physical

plane, s _ 0 corresponds to _ _ =, and s _ _ corresponds to _ _ 0.

Thus_ we can readily obtain the solution in physical terms in the vicinity

of the wall (N _ 0), in the vicinity of the initial frozen Mach line

(_ _ O) and at large distances downstream of the initial frozen Mach line

(_ _ _). This will be shown in detail in the following sections.

VICINITY OF THE INITIAL FROZEN MACH LINE

To determine the flow field in the vicinity of the initial frozen

Mach line we compute _, u, v and their _ derivatives (first order or

higher) at _ = 0. This can be done by expanding the expressions for the

Laplace..... transforms of _' u = _++x = _' v = _ = _ " _' and their
derzvatzves mnd_v_dually for large s, then applying the_theorem of

equation (16d). It will be sufficient to show the actual derivations

for _(0,N), u(0,_), and u_(0,N) since the higher _ derivatives of

and the similar expressions for _ are obtained in exactly the same
_nner.

In the vicinity of the corner (_ _ 0) the boundary slope can be
expanded into the form

or

~ i _,,_2

0o + Oo'_ +- + • • _ > 0_~ 2 -

o _,<o

~ _o s-z + _o'S -2 + _o"S -3 + (21)
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At large s, _(s) and d-Z(s) can be expanded as

d ~ I + a - i -i -a---- s - Ds + O(s-3)
2

_-z ~i a - i -zs + _s-2 + O(s-3)
2

(22)

(23)

where D _ (a - 1)(a + 3)/8, E _ (a - 1)(3a + 1)/8.

Substitutiug equations (21), (22), and (23) for e, _, and a -I into

equation (20) and applying the theorem of equation (16e) gives

_(o,_) = o (24)

Substituting these same expanded quantities into _ = s_ - _(0,_) and

applying again the theorem of equation (16d) gives

_(O,N) = _oexp< a -I_ N (25)

The same operation (asymptotic inversion) on (u_) = s_ - s_(O,_) - u(O,h)
yields

_(o,_) : -<_o' a - 1 _° + D_°h) expf a "12 < 2 h) (26)

Equations (24) and (29) confirm the assumptions needed to obtain equation

(i8) of the previous section.

One can in the same manner invert the Laplace transform of higher

derivatives of _ and the _ derivatives of _. In summary we obtain

A

5
i

5

-_(o,_)

v(o,_)

-[_(O,h) o' a - 1
= 2

_(o,_) (eo' + Peon)

a- 1 >= _oexp

<
or 3 in general_

(27)

a 2-Z 0> (28)
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n

(u or v) = _ciNiexp a - i
_-o 2
- i=o

(29)

where the ci are constants depending on i. Thus u and g and their

derivatives (to all orders) vanish at large N in the vicinity of the

initial frozen Nach line. This is expected since at large N the flow

field is essentially at the equilibrium condition, and all disturbances

should approach zero in front of the neighborhood of the initial equilib-

rium Mach line, which is at _ = (_- i)_.

The flow field in the vicinity of the frozen Mach line can be

described in general by the expression (f = [ or _)

f({,_)= f(o,_)+ f_(0,_)_+ (3o)

where f_ f_, and so forth are obtained in the manner shown above.

It should be noted that neither the classical (equilibrium or frozen)

nor the present nonequilibrium linear theory is accurate at large distances

from the wall because, owing to cumulative second order effects, the

linear theory is not uniformly correct at large _. The present section,

however, shows the essential effects of nonequilibrium in the linear

theory_ without taking into account the nonlinearity. In order to obtain

results that are uniformly valid for all _, nonlinear effects would have

to be taken into account at least approximately.

FLOW FIELD IN THE VICINITY OF _IIKEWALL

To determine the flow field in the vicinity of the wall, we compute

the flow quantities and their _ derivatives at _ = O. Thenj letting

f denote any flow quantity in the vicinity of the wall, f is given by

the series f(_,_) = f(_,0) + _(_,0) + .... The quantities f(_,O),

f_(_,O), . . . can be obtained by inverting _(s,0), Y_(s,0), . .., etc.

Consider _, g, their first { derivatives, and 8, as examples.

The Laplace transforms of these quantities at N = 0 are given by the

relations deduced from equation (20) as:

[(s,o) : -F_-_ (31a)

_(s,o)= _ (3Zb)

_n(s,o): sF(l- _-i) (31c)

Vq(s,o): -sF(_- i) (3ld)



18

For the direc_ p_ob!em we can invert equations (31) in their present

forms and obtain u_ v_ etc._ in terms of e, and for the inverse problem

we can rewrite equation (31a) with 0 in terms of u, then invert and

obtain @ in terms of _(_0).

The inversion of q and q-z can be obtained from an inverse transform

table (e.g., ref. 6), and the inverse transform of _ is simply _ by

definition. The expressions of equations (31), however, contain products

of two functions of s (except eq. (31b)). To invert this type of expres-

sion, one can apply equation (16c), the theorem for inversion of products.

In the direct problem for u, let _i = _ or _m = @, then T e is

identified as s-Z_ -I. The quantity _a is obtained by inverting

s-iq -i. The inversion of s-md -i and S-IG (for later use) can be done

in the following manner. From reference 6, page 235, we obtain

= -b _)c +b _}lo<C 2

o

where Io is the zeroth-order modified Bessel function of the first

kind. The above relation can be used to evaluate the inverse of s-_ -_

and s--l_

c(_;a) _ L_i(s_l _l) = exp < a+12 _> I° _.a-12 _>

+ exp 2 (32)

<, 1 + a 0 To <-1 - a 0

+ a exp 2
o

(33)

One can easily verify that

_(_]a) - c(a_;a -i)

Thus in terms of _ is

_(_,0) = -e(O)c(_) -/ O'(t)c(_ - t)dt
<J

o

(34a)

A

5
i

5
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Equation (31b) gives immediately

For u_(_,O), note that, from equation (31c), _(s,O) = s_- s_c-l; the
inverse transform of the first term gives _', and the inverse transform

of the second term gives u_(_,O). Thus _(_,0) is

un(_,o) = _,(_) + _(_,o) (34c)

Again, the

Thus _(_,0) is

g(_) -- e(O)_(_) - e'(t)_(_ - t)dt

O

N

_(_,o) = _,(_) - g,(_) (3_)

Note that _ = -_ - _f2_o (_ - _)d_, the density is therefore

_(_,o) = -_(_,o) + _f2g(_) (34e)

For the inverse problem we rewrite equation (31a) as

_(s) = -_(s,O)_(s)

and apply equation (16d), taking f_ to be _(_,0) or Yi = _(s,O) (in

which case f2 is identified as s-la), and obtain

_(_) = -u(O_O)_(_) -_o _t(t'O)_(_ " t)dt (36)

It is interesting to note that, while in the classical linear theory

_(_,0) ~ _(_,0), in the nonequilibrium linear theory the same result does

not hold_ that is, the reciprocal theorem in classical linear theory,

Frozen u(_,O) - _(_,0) = 0

EquiZibri_m J_ _(_,o)- _(_,o)= 0

is no longer valid. On the other hand, noting that Io is an even func-

tion, one can see that

(35)

For _(_,0), note that (eq. (31d)) _(s,O) = s_ - se_.

inverse transform of the first term gives _'(_), and the inverse trans-

form of the second term gives g'(_), where g(_) is defined as
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c" _ = (i- a) f_exp _ a + i _)I° _a - i _)d_2
o

Hence c = _ when a = i, and, from a comparison of equations (34 ) and

(35), it is apparent that when a = i, u(_,0) - _(_,0) = O. Physically,

a = i when the two sonic speeds (frozen and equilibrium) approach the

same value. In this case the frozen flow value is the same as the

equilibrium flow value_ hence when a = I the flow is always in both

frozen and equilibrium conditions, and there is no nonequilibrium effect. 4

Examples

Equations (34) give the distributions of various flow quantities on

an arbitrary smooth boundaryj and equation (36) gives the shape of the

boundary for an arbitrary distribution of _(_,0). We now apply these

relations to a few specific problems.

Flow past a straight corner.- This case was treated by Clarke in

reference 2. For a straight corner, _ = constant. Letting eo denote

this constant, equations (34) give

=

=

Thus c(_) can be interpreted as the response of u(_,0) per unit negative

constant deflection angle. From these expressions the thermodynamic

properties can also be obtained. For examples, the pressure and density

are

P - Poo h - hoo eo /Zx"_

P " Poo

POO

eo + 2 x

The discussions on these results will not be elaborated since they

were already treated in reference 2. The functions c(_) and ,(_) are

not common table functions. For the present paper they are computed by

A

5
i

4This can also be verified from the original differential equation.

Integrating equation (ii) once gives, for a = i,

+ _ = f(y+)exp(-x +)
x+x + y+y+

since f(y+) must satisfy all values of x+_ and _x+x + and _y+y+ are
zero for x+ < O, f(y+) must be zero.
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meansof the IBM 704 digital computer of the AmesResearch Center. These
functions are tabulated in tables I and II and plotted in figure 2 versus
x for a = 2 and a range of values of K.

As one can see from the tables, c approaches _ while _ approaches
4-a as _ approaches _. With some simple computations it is easy to verify

that (p - p_)/p_U_ a and (p - p_)/p_ approach the equilibrium values at

_ _, which confirm our earlier physical deduction. More considerations

on the flow field at _ _ _ will be treated in the next section.

Wall with a constant pressure.- In classical gasdynamics, a constant

pressure on the boundary past the corner is assodiated with a boundary of

constant deflection angle. This is not the case when the flow is out of

equilibrium.

Letting Po denote the constant pressure, equation (36) gives (noting

or, in terms of physical values,

_f p_ U_ 2 K

The integration of @ from equation (37) gives the shape of the boundary

as

y = K_f p "-Poo _Fx/Kj/(t)dt (38)

o

The value of y/[K_f(p - p_)/p_U_ a] has been computed by integrating

?(£) n_auerically, and the result is presented in figure 3. At the vicinity

of the corner, that is, for small x/K_ the fluid has little chance to

adjust its flow properties to conform with the new environment (pressure

rise); consequently, the boundary starts out following essentially the

boundary of the frozen case. As the fluid flows downstream, its flow

properties tend toward equilibrium. Thus the initial boundary slope takes

the frozen value, and the boundary becomes parallel to the equilibrium

case far downstream.

Flow past a class of walls with varying slope.- Consider now_ as the

last example of this section, a class of boundaries whose shapes are

defined by the relation

:  o[1- (n + n]

or

(n +z1)n <_>n-
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From equation (34a) we obtain the velocity _ on the wall as

u(_,O) = -_oC(_) + [8o(n + 1)n/Z] $ (t/z)n-Zc(_ - t)dt

0

(39)

The pressure on the boundaries is, since p = -u

- n-1

OooUoo2e° = c Ln
o

(4o)

The density on the wall is_ noting

g(_) = eo_(_) + [_o(n + l)n/Z] / (t/z)n-l_(_ - t)dt

%

and _(_,0) = -_({,0) + #f2g(_) (eq. (34e))

p - p_ Pf

Poo 8o
-- C

n + i Zlc_--x- t) _f2_<K t)] dtzn n ,; x/Ktn- + -

O

(4z)

If we restrict _ to 0 < _ < Z, and let n = i equation (40) gives
m

the pressure distribution on a biconvex airfoil (L being the chord length)

© )p - p_ _f _<
- c - c - t dt

p=u,Jeo o
(42)

We can compare the pressure distribution from equation (40) with the

results from the classical linear theory, which gives the well-known

Frozen P - P_ #f - <l - L) (43a)
PooUoo2 @o

P - P_ _f - a-Z/a<l - L) (43b)Equilibrium p_Uco2 80

results

The expression for pressure from equation (42) has been computed

numerically; the result for a = 2 is presented in figure 4. When the

chord length is very sm_ll comps red with the relaxation length (L/K << i),

again the fluid pressure in the flow field of interest (0 _ x/L _ i) has

no time to adjust itself to the equilibrium value and stays relatively

A
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1
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close to the frozen value. As the chord length becomes longer (say

L/K = i.O), the fluid pressure begins to take on values closer to equilib-

rium. For very large chord length, the fluid pressure, after taking on

the frozen value at the leading edge, drops rapidly to a variation very

close to that of equilibri_ flow. At near equilibrium (L/K _ _) the

fluid pressure drops immediately to the equilibrium value as soon as

the particle passes the leading edge.

Note also that the fluid particles always start off with the frozen

flow properties (at the leading edge) and then tend to acquire the

equi!ibri_ values. The pressure actually overshoots the equilibrium

value after which it tends toward a variation parallel to the equilibrium

curve. As a result the pressure for the nonequilibrium cases has the

property that

(a) Free-stream pressure occurs not at the midchord but upstream

of it.

(b) The trailing-edge pressure falls between the equilibri_ and

frozen values.

These two phenomena, the shift of the location of free-streampressure

and the variation of the pressure at the trailing edge, my be useful as

means for experimental determination of the relaxation length.

In this last connection, since the optical techniques used in high-

temperature gas-flow experiments measure the fluid density rather than

pressure, it would be interesting to see how density distribution varies.

For a biconvex airfoil, equation (41) gives the density on the wall as

p - p Pf

Poo _o

fx/ F /x
Z_ ° Lc_ - t) + Pf%\_ - t)]

dt (44)

This expression has been used to compute the density numerically, and the

result is presented in figure 5 for a = 2 and _f = 3, or Mf =_i_ X 3

and M e = _/[9 _ 4. That essentially the same types of comments on the

pressure regarding the frozen, transition, and equilibrium characteristics

can be applied here is apparent.

FLOW FIELD AT LARGE

Consider now the flow field at large _, which has already been

discussed to some extent previously. Since _ _ _ corresponds to s _ 0,

we study the Laplace transforms of the flow quantities at s _ 0. Consider,
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for example, the Laplace transform of _(_N), which is, by operating

(_/_@-(8/_) on _- from equation (20),

v(s,n)= _(s)ex_[-s_(_- l)]

As s becomes small, _ _fg, and V approaches

v(s,_)~ _(s)e_[-s_(j_- 1)] (45)

To interpret this we introduce one more theorem: the shifting
theorem, which states

_(s)exp(-bs) =L[_(_ - b)] (46)

Applying equation (46) to the right-hand side of equation (49) gives,

identifying _(_[ - !) as b,

L [_(_,_)] ~ L[_(_ - _ _ + _)]

=L[O(x + - 6Z y+)]

or

_(_, _) - _(x+ _ _ y+)

One can verify that x + - _-a y+ = constant are the equi!ibri_m M ach lines.

Consequently, at large _ the velocity g is constant along the equilib-

rium _ch lines. Another simple computation will verify that_ denoting
= x + -_'gy+,

_(_,_) ~ a-I/aO(c_) at _ _

Therefore at large distances downstream of the initial frozen _{ch

line the velocities [, g (and hence all other flow quantities) are only

functions of _. Since at large _ the flow quantities take essentially

the equilibrium values at the wall_ we arrive at the expected result:

at large { the flow quantities take essentially the equilibri_ values

everywhere and are constant along th_ equilibrium Mach lines; thus at large

the flow approachss the equilibrium limiting case.

The above conclusion is valid when there is no characteristic

geometrical length in the problem. When such a length exists_ this
result must be interpreted with care.

Note that _ _ (x/K) - (y_f/K) can be written as _ = Z_*, where

_* is defined as _* m (x - y_f)/L, (recall Z _ L/K and L is the

characteristic geometrical length).

Thus in the presence of a characteristic geometrical length _ can

approach infinity by either having

A
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_* finite

(b) Z finite _ _* _

(c) Z_,, _**

There is no question about the validity of cases (a) and (c). Case

(b) is valid too, provided the boundary condition is not the recurrent

type (such as wavy wall or a wall having an infinite number of wavelets

not necessarily of any fixed wavelength). For if the boundary condition

is such that new disturbances recur infinitely, then new disturbances can

occur in the vicinity of any point no matter how large _* is. In this

case the above result is valid only for _* so large (namely_ infinity)

that it is probably of no practical interest.

FLOW FIELD AT FINITE _ AND

We have treated the flow field only at small _, small _, and large

_. The flow field at finite _ and _ has not been discussed because_ as

mentioned before 3 the linearized theory is not accurate at large h.

Therefore_ except for _ _ 0, where the decaying properties of the flow

quantities along the initial outgoing frozen M_ch line is interesting,

and _ _ _, where the flow field behaves similar to the equilibrium case3

only the flow field for small _ was discussed.

Nevertheless_ for the sake of completeness 3 and for those who are

interested in working further on this problem (such as obtaining higher

approximations), we conclude by showing how the previous results can be

extended to _ greater than zero.

Note that the Laplace transform of any flow property can be put into

the form (eq. (20))

Y(s,q) = _(s,O)exp[-s_(_ - i]

Equation (16c) gives

f(_,_) = f(_,0)_(0,_) +f _t(t,_)f(_ - t,0)dt
o

(47)

where

k(_,_) - Ll<s-lexp[-s_(j - i)]>
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Berry and Hunter (ref. 7) obtained the inversion for h for small

(a- i) as

k(_,B) = 1 - (a - i)_ sinh _ exp[-(_ + D)][I + 0(a - i)]

2(a i) 0 _

(i + za)(1 + az 2)

[ a+z ]exp - (_ + _) dz
l+z 2

sin I1 + za z(_++ za _)]

(48)

Thus equation (47) gives the flow field for all values of _ and _,

with f(_,0) already obtained previously, and h given by equation (48)

for small (a - I).

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., June 7, 1961
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TABLE I.- FUNCTION c(_]a) VERSUS _ AND a

1.01
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.99952

.99909

•99871

.99835

.99804

•99774

.99748

•99725

.99704

.99685

.99652

.99625

.99603

.99585

.99570

.99598

.99548

•99540

.99533

•99528

.995i8

.99513

.995o9

•99507

.99506

.99505

.99504

i.i

1.00000

•99526

•99100

•98718

.98374

.98066

.97789

.97543

•97317

.97116

.96936

.96629

.96381

•96181

.96020

.95890

•95784

.95700

.95632

-95577

-95532

.95455

.9541O

•95383

•95368

-95359

.95354

.95346j

1.00000

.95413

.91559

.88320

•85596

.83304

.81372

.79749

.78372

.77213

.76235

•74707

.73612

•72825
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•71845

•71546

.71328

.71169

.71O52
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•70773

.70742

.70727

.70719

.70715

.70711

1.00000

.87182
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-59553
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•52446
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•50404

.5o295

.90217
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.50120

.5OO59
•5003o

.5O016

.5OOO8

•50004
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.SOOO0

1.00000

.80052

.67445

.59330

.54ooi

.5o425

.47972

.46292

.45018

.44115

.43442

.42535

.41981

.41627

•41392

.41232

.41120

.41042

.40985

.40944

.40914

.40869

•40847

•40837

.40831

.40828

.40826

•40825

1.O0000

.73857

.59409

.51116

.46152

.43049

.41024

.39648

.38679

•37975

.37449

.36738

•36298

.36013

.35822

.35692

.35600

.35535

•35489

.35455

.35430

•35392

.35374

.35365

.35361

.35358

•36357

•35355

i0

1.00000

•68458

.53129

.45175

.4O743

.38o91

•36398

•35256

.34451

.33862

.33420

.32817

.32440

•32194

•32029

•31916

.31887

.31780

.31739

.31709

.31688

.31695

.31639

.31631

•31627

•31625

•31624

.31623
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TABLE II.- FUNCTION 9(_]a) VERSUS _ AND a

_a

0

.i

.2

.3

.4

.5

.6

.7

.8

.9
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3-5
4,0

4,5

5,o

5,5
6,0

CO

i .01

1.00000

1.00048

1.00091

1.00130

i.00i65

i.00197

1.00225

1.00251

1.00275

1.00296

1.00316

1,oo348

1.oo376
1.oo398

1.oo417

1,0o432

1.00444

1.00454

1.00462

1.oo469

1.oo474

1,00493

1,00490

1.00493

1.00495

i.oo497

1.00498

1,o.o499

i.i

1.00000

i.00475

1.00904

1.01291

1.01641

1.01956

1.02241

1.02498

1.02730

1.02939

1.03128

1.03453

1.03717

1.03932

1.04108

1.04251

1.04368

1.04463

1.04540

1.04603

1.04654

1.04745

1.04799

1.04832

1.04892

1.04863

1.04870

1.04891

2

1.00000

1.04701

1.0889i

1.12519

1.1576!

1.18629

1.21168

1.23416

1.25409

1.27174

1.25740

1.31363

1.33432

1.35067

1.36361

1.37387

1,38201

!, 39949

1,39364

1-39774
i,4O1O2

1.40661

1.40981

1.41165

1.41272

1.41334

1.4137o

1.41421

4

!.00000

1.13773
1.25395

1.35255

1.43655

1.5o842

1.57016

1.62338

1.66940

1.70931

1.74402

1.80069

1.84410

1.87798

1.90355!

1.92380i

1.93964

!.95209

i .96191

1.96966

i -97579

1.98617

1.992,94

!.99540

1-99733

1.99844

1.99909

2.00000

i. 00000

1.22441

i. 40617

i. 55529

1.67900

i. 78260

i .87006

i .94441

2.00799

2.06262

2.10979

2.18616

2.24417

2.28865

2.32301

2.34971

2.37056

2.38690

2.39976

2.40991

2.41794

2.43148

2.43914

2.44351

2.44602

2.44747

2.44831

2.449 49

8

1.00000

1.30740

1.54728

1.73886

1.89474

2.02349

2.13110

2.22192

2.29916

2.36528

2.42218

2. 51403

2.59359

2.63679

2.67783

2.70969

2-73454

2 •75401

2.76932

2. 78140

2.79094

2.80704

2.81614

2.82133

2.82431

2.82603

2.8270 °

2.82842

i0

1.00000

1.38703

1.67902

1.90718

2.09024

2.24009

2.36460

2.46926

2.55803

2.63387

2.69904

2.80406

2.88347

2,94416

2,99093

3,O2722

3-0555i

3-07767

3-09509

3.10882

3,11968

3-13799

3.14833

3.15422

3.15760

3.15956

3.16069

3.16228
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Figure I.- Linearized supersonic flow past an arbitrary boundary.
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I
Q.

O
<b

33

15

_'-.L

___\_K__,oo
,o _"_."_---,-,o

5

0

-5

oo, equilibrium

-I0

-150 20 40 60 80 I00

Percent chord

Figure 5-- Density distribution on a biconvex airfoil versus several

values of L/K] (Me 2 - 1)/(Mr 2 - l) = 2 and Mf = l,_f_.

.ASA-La.gley,,961 A-515




